GCE

Physics A

Advanced Subsidiary GCE

Mark Scheme for June 2012

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2012
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

Annotations

Annotation	Meaning
[T]P]	Benefit of doubt given
[c]1]	Contradiction
3	Incorrect response
[-]	Error carried forward
-T	Follow through
[1.	Not answered question
-	Benefit of doubt not given
Fi+	Power of 10 error
\square	Omission mark
[i]	Rounding error or repeated error
[${ }^{5}$	Error in number of significant figures
-	Correct response
-	Arithmetic error
2	Wrong physics or equation

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
\boldsymbol{I}	alternative and acceptable answers for the same marking point
$\mathbf{(1)}$	Separates marking points
reject	Answers which are not worthy of credit
not	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
$\mathbf{()}$	Words which are not essential to gain credit
$\overline{\text { ecf }}$	Underlined words must be present in answer to score a mark
AW	Error carried forward
ORA	Alternative wording
	Or reverse argument

Subject-specific Marking Instructions

CATEGORISATION OF MARKS

The marking scheme categorises marks on the MABC scheme
B marks: These are awarded as independent marks, which do not depend on other marks. For a B-mark to be scored, the point to which it refers must be seen specifically in the candidate's answer.

M marks: These are method marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answer. If a candidate fails to score a particular \mathbf{M}-mark, then none of the dependent \mathbf{A} marks can be scored.

C marks: These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a Cmark and the candidate does not write down the actual equation but does correct working which shows that the candidate knew the equation, then the \mathbf{C}-mark is given.

A marks: \quad These are accuracy or answer marks, which either depend on an M-mark, or allow a C-mark to be scored.

Note about significant figures:

If the data given in a question is to 2 sf, then allow answers to 2 or more sf.
If an answer is given to fewer than 2 sf , then penalise once only in the entire paper.
Any exception to this rule will be mentioned in the Guidance.
Please put ticks and crosses against all sub-sections marked AAA (7 in total)

Question			Answer	Marks	Guidance
1	(a)		Work done/energy transfer(red) per unit time	B1	accept per second or rate of energy transfer / rate of doing work or energy transfer / time taken
	(b)	(i)	$\begin{aligned} & \text { using } P=V I \\ & I=40 / 230=0.17(4)(A) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	accept 4/23
	(b)	(ii)	$\mathrm{R}=230 / 0.17=1400(\Omega)$	B1	possible ecf b(i); expect and accept 1322 or 1353Ω accept $40=230^{2} / \mathrm{R}$ giving $\mathrm{R}=52900 / 40=1322 \Omega$
	(c)		$\begin{aligned} & \mathrm{I}=\mathrm{RA} / \mathrm{P} \\ & \mathrm{I}=1.3 \times 10^{3} \times 3.0 \times 10^{-8} / 7.0 \times 10^{-5} \\ & \mathrm{I}=0.56(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { C1 } \\ & \text { A1 } \end{aligned}$	```Choosing R = \rho//A substitution; ecf b(ii) evaluation; allow 0.57 m (using R = 1322\Omega) and 0.58 m (using 1353\Omega) and 0.6 m (using 1400\Omega)```
$\begin{aligned} & \hline \mathbf{A} \\ & \mathbf{A} \\ & \mathbf{A} \end{aligned}$	(d)		larger power needs larger I so smaller R (for same V) smaller R (but same length) so larger A / thicker	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	accept $P=V^{2} / R$ or calculation $I=0.26 \mathrm{~A}$ giving $R=880$ or 890Ω NB if R calculated correctly here, give first 2 marks hence smaller R (but same length) so larger A / thicker
	(e)	(i)	$\begin{aligned} & \mathrm{Q}=\mathrm{It}=0.17 \times 8 \times 60 \times 60 \\ & \mathrm{Q}=4900(\mathrm{C}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	ecf b(i) allow 4896; or 5000 or 5011 if using I $=0.174 \mathrm{~A}$ give 1 mark for 1.36 or 81.6
		(ii)1	(a unit of) energy equal to 3.6 MJ or 1 kW for $1 \mathrm{~h} / \mathrm{AW}$	B1	eg 1000 W for 3600 s or similar
		(ii)2	$\begin{aligned} & 40 \times 8=320 \mathrm{~Wh} / 0.32 \mathrm{kWh} \\ & 0.32 \times 22=7.0(4) \mathrm{p} \end{aligned}$	$\begin{aligned} & \hline \text { C1 } \\ & \text { A1 } \end{aligned}$	accept 7 p (no SF error); allow 7000p (7040) for 1 mark
			Total	15	

Question			Answer	Marks	Guidance
2	(a)	(i)1	infinity	B1	accept symbol
	(a)	(i)2	$\begin{aligned} & \mathrm{R}=1.8 / 10 \times 10^{-3} \\ & \mathrm{R}=180 \Omega \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	0.18Ω scores 1 mark
A	(a)	(ii)	resistance decreases because I increases more than V therefore since $\mathrm{R}=\mathrm{V} / \mathrm{I}$ value decreases/AW	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	accept calculation at second value, e.g. at $2.0 \mathrm{R}=53 \Omega$, with comparison OR at two other values QWC mark for second marking point
$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	(b)		correct symbol and direction for LED R in series with LED across $X Y$ ammeter in series voltmeter in parallel with LED only	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	circle not essential, internal line optional no variable resistor
	(c)		torch; car brake/rear light/ traffic light, etc. torch: draws a lower current / light lasts longer before battery discharged/AW or LEDs (much) more efficient (at converting electrical energy into light)/AW or if one LED fails remainder still lit/AW	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	suitable example accept any one sensible statement, include longer life, more durable contradictory statements score zero
			Total	12	

Question			Answer	Marks	Guidance
4	(a)		R's in parallel have same V/AW so $4.0 \times 0.30=6.0 \times 0.20$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	allow I splits in inverse ratio to R or AW; hence I in $6 \mathrm{ohm}=4 / 6 \times 0.3=0.2 \mathrm{~A}$
	(b)	(i)	sum of/total current into a junction equals the sum of/total current out or total algebraic sum of currents is zero	B1	allow Kirchhoff's first law
		(ii)	0.50 (A)	A1	accept 0.5 (A) (no SF error)
	(c)		correct formula for R_{p} and substitution $\begin{aligned} & \mathrm{R}_{\mathrm{p}}=2.4 \Omega \\ & \mathrm{R}_{\mathrm{s}}=8.0(\Omega) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { C1 } \\ & \text { A1 } \end{aligned}$	apply ecf to R_{p} for second mark accept $8(\Omega)$ (no SF error)
	(d)	(i)	energy transferred from source/changed from some form to electrical energy; per unit charge (to drive charge round a complete circuit)	M1 A1	allow form as e.g. light/chemical/heat allow energy divided by charge
		(ii)	$\mathrm{V}=\mathrm{IR}=0.50 \times 8.0=4.0(\mathrm{~V})$	A1	ecf b(ii), c i.e. answer $=b$ (ii) $\times c$ accept 4 (V) (no SF error)
		(iii)	$\begin{aligned} & \mathrm{E}-\mathrm{V}=\mathrm{Ir} \text { giving } 5.0-4.0=0.50 r \\ & r=2.0(\Omega) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	ecf b(ii) accept $2(\Omega)$ (no SF error); give max of 1 mark for $r=3.3 \Omega$, i.e. using I $=0.3 \mathrm{~A}$
			Total	12	

Question			Answer	Marks	Guidance
5	(a)		electrons have mass, photons have zero mass electrons have charge, photons are uncharged photons travel at speed of light	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	max 2 marks from 3 marking points lower speed of electrons not required for mark
	(b)	(i)	$\begin{aligned} & \text { energy }=\mathrm{eV} \\ & =1.6 \times 10^{-19} \times 5000=8.0 \times 10^{-16}(\mathrm{~J}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	accept $8 \times 10^{-16}(\mathrm{~J})$ (no SF error)
		(ii)	$\begin{aligned} & 1 / 2 \mathrm{~m} v^{2}=8.0 \times 10^{-16} \\ & \mathrm{v}^{2}=1.76 \times 10^{+15} \\ & \mathrm{v}=4.2 \times 10^{7}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { C1 } \\ & \text { A1 } \end{aligned}$	evidence of calculation required
	(c)	(i)	electron wavelength depends on its speed/momentum	B1	accept de Broglie equation with labels defined
		(ii)	$\begin{aligned} & \lambda=\mathrm{h} / \mathrm{mv} \\ & \lambda=6.63 \times 10^{-34} /\left(9.1 \times 10^{-31} \times 4.2 \times 10^{7}\right) \\ &=1.7 \times 10^{-11}(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { C1 } \\ & \text { A1 } \end{aligned}$	select formula substitution; allow 4×10^{7} allow $1.8 \times 10^{-11}(\mathrm{~m})$
	(d)		$\begin{aligned} & \mathrm{E}=\mathrm{hc} / \lambda \\ & \lambda=6.63 \times 10^{-34} \times 3.0 \times 10^{8} / 8.0 \times 10^{-16} \\ & =2.5 \times 10^{-10}(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { C1 } \\ & \text { A1 } \end{aligned}$	select equation substitute and manipulate answer $2.49 \times 10^{-10}(\mathrm{~m})$
	(e)	(i)	photoelectric effect / emission	B1	
		(ii)	$\begin{aligned} & \mathrm{KE}_{\max }=\mathrm{hf}-\varphi \text { or } \mathrm{hf}=\varphi+\mathrm{KE}_{\text {max }} \\ & 9.0 \times 10^{-19}-7.2 \times 10^{-19}=1.8 \times 10^{-19}(\mathrm{~J}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	can be copied from data sheet
		(iii)	Electrons in the metal have a range of energies most require more than the w.f. energy to escape from the surface/AW	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	w.f. is minimum energy to escape from surface /AW max k.e. given when w.f. subtracted from photon energy or photon gives all of its energy to one electron
			Total	19	

Question			Answer	Marks	Guidance
6	(a)	(i)	displacement : (any) distance moved from equilibrium of a point/particle on a wave amplitude maximum displacement (caused by wave motion)	B1 B1	allow rest, zero, mean position
	(a)	(ii)	frequency number of wavelengths passing a point/vibrations at a point per unit time/second or produced by the wave source IAW phase difference between two points on the same wave/waves of the same frequency, how far through the cycle one point is compared to the other	B1 B1	allow number of oscillations / cycles per second accept in one second allow suitable descriptions of in phase and out of phase; or an angular measurement of how much a wave leads or lags/AW
A	(b)		pulse starts at 0.5 s ends at 2.0 s pulse shape is reversed from Fig 6.1 pulse has correct amplitudes	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	ie amplitude decreasing from L to R over 1.5 s accept inversion in time axis NB if extra loops, probably only first marking point available if diagram looks like a coiled spring rather than a smooth curve, $1^{\text {st }}, 2^{\text {nd }}$ and $4^{\text {th }}$ marking points are possible
			Total	8	

Question			Answer	Marks	Guidance
$\begin{aligned} & 7 \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	(a)	(i)	(atom releases energy when) electron moves from high to low level energy released is in form of a photon possible transitions are between $\mathrm{n}=3$ and $\mathrm{n}=1, \mathrm{n}=3$ and $\mathrm{n}=2, \mathrm{n}=2$ and $\mathrm{n}=1$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	can be illustrated on diagram by downward arrow connecting levels can be illustrated on diagram
	(a)	(ii)1	$\begin{aligned} \varepsilon & =h c / \lambda \\ & =6.63 \times 10^{-34} \times 3.0 \times 10^{8} / 6.56 \times 10^{-7} \\ & =3.0(3) \times 10^{-19}(\mathrm{~J}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	choosing formula and substitution answer accept $3 \times 10^{-19}(\mathrm{~J})$ (no SF error)
	(a)	(ii)2	from $\mathrm{n}=3$ to $\mathrm{n}=2$	B1	allow between $\mathrm{n}=3$ and $\mathrm{n}=2$ allow $n=2$ to $n=3$ or between $n=2$ and $n=3$ if there is no contradiction with answer given in 7ai
	(b)	(i)1	$\begin{aligned} & d \sin \theta=\lambda \quad d \sin 11.4^{0}=6.56 \times 10^{-7} \\ & d=6.56 \times 10^{-7} / 0.198 \\ & d=3.3 \times 10^{-6}(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { C1 } \\ & \text { A1 } \end{aligned}$	choosing formula and substitution manipulation and $\sin 11.4^{\circ}=0.198$
	(b)	(i)2	$1 / \mathrm{d}=3 \times 10^{5} \mathrm{~m}^{-1}=300 \mathrm{~mm}^{-1}$	A1	ecf b(i)1; allow 301 or 302 as data given to 3 sig figs
	(b)	(ii)	2 rays, one either side of normal to grating at about 8°, say	B1	accept any sensible angle
			Total	11	

Question			Answer	Marks	Guidance
8	(a)		travel in a vacuum same speed (in vacuum)/at c caused by accelerating charges are (oscillating) electric and magnetic fields	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	max 2 marks from 4 marking points for any one incorrect property, max of $1 / 2$ if 2 incorrect properties, score 0
	(b)		10^{-4} microwaves; $10^{-6} \mathrm{ir} ; 10^{-8} \mathrm{uv} ; 10^{-12}$ gamma	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	4 correct 2 marks 2 correct 1 mark
	(c)	(i)	the incident wave is reflected at the sheet to produce return wave of same frequency/AW reflected wave is weaker OR the reflected wave has travelled a greater distance	B1 B1	accept incident_and reflected waves are from same source/of same wavelength/AW allow wave amplitude decreases with distance
	(c)	(ii)	reflected wave interferes/superposes with the incident wave constructive interference occurs (or waves add) to give maxima/AW and destructive interference occurs (or waves add) to give minima/AW detail given, e.g. waves add in phase for max/out of phase for min or path difference $n \lambda$ for $\max (2 n+1) / 2 \lambda$ for min	B1 M1 A1	if incident and reflected waves identified in (c)(i) accept "the waves interfere / superpose" QWC mark for second marking point accept antinodes for maxima and nodes for minima
	(c)	(iii)	$\lambda / 4=7.5 \mathrm{~mm} ; \lambda=30 \mathrm{~mm}$	B1	
	(c)	(iv)	appreciation that I is proportional to a^{2} $\begin{aligned} & \text { ratio }=(0.8+0.6)^{2} /(0.8-0.6)^{2} \\ & =(1.4 / 0.2)^{2}=7^{2}=49 \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	
			NOW SCROLL DOWN TO CHECK PAGE 18 IS BLANK		
			Total	13	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

