

GCE

Physics A

Advanced Subsidiary GCE

Unit G482: Electrons, Waves and Photons

Mark Scheme for June 2012

PMT

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2012

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

Annotations

Annotation	Meaning
	Benefit of doubt given
CON	Contradiction
×	Incorrect response
▋╡┩┛	Error carried forward
	Follow through
NAX41	Not answered question
	Benefit of doubt not given
	Power of 10 error
×	Omission mark
	Rounding error or repeated error
	Error in number of significant figures
*	Correct response
	Arithmetic error
2	Wrong physics or equation

G482

June 2012

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
	alternative and acceptable answers for the same marking point
(1)	Separates marking points
reject	Answers which are not worthy of credit
not	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
	Underlined words must be present in answer to score a mark
ecf	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Subject-specific Marking Instructions

CATEGORISATION OF MARKS

The marking scheme categorises marks on the MABC scheme

- **B** marks: These are awarded as <u>independent</u> marks, which do not depend on other marks. For a **B**-mark to be scored, the point to which it refers must be seen specifically in the candidate's answer.
- **M** marks: These are <u>method</u> marks upon which **A**-marks (accuracy marks) later depend. For an **M**-mark to be scored, the point to which it refers must be seen in the candidate's answer. If a candidate fails to score a particular **M**-mark, then none of the dependent **A**-marks can be scored.
- **C** marks: These are <u>compensatory</u> method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a **C**-mark and the candidate does not write down the actual equation but does correct working which shows that the candidate knew the equation, then the **C**-mark is given.
- A marks: These are <u>accuracy</u> or <u>answer</u> marks, which either depend on an **M**-mark, or allow a **C**-mark to be scored.

Note about significant figures: If the data given in a question is to 2 sf, then allow answers to 2 or more sf. If an answer is given to fewer than 2 sf, then penalise once only in the entire paper. Any exception to this rule will be mentioned in the Guidance.

Please put ticks and crosses against all sub-sections marked AAA (7 in total)

C	luesti	ion	Answer	Marks	Guidance
1	(a)		Work done/energy <u>transfer</u> (red) per unit time	B1	accept per second or rate of energy transfer / rate of doing work or energy transfer / time taken
	(b)	(i)	using P = VI I = $40/230 = 0.17(4)$ (A)	C1 A1	accept 4/23
	(b)	(ii)	R = 230/0.17 = 1400 (Ω)	B1	possible ecf b(i) ; expect and accept 1322 or 1353 Ω accept 40 = 230 ² /R giving R = 52900/40 = 1322 Ω
	(c)		$I = RA/\rho$ $I = 1.3 \times 10^{3} \times 3.0 \times 10^{-8} / 7.0 \times 10^{-5}$ I = 0.56 (m)	C1 C1 A1	Choosing R = ρ I/A substitution; ecf b(ii) evaluation; allow 0.57 m (using R = 1322 Ω) and 0.58 m (using 1353 Ω) and 0.6 m (using 1400 Ω)
A A A	(d)		larger power needs larger I so smaller R (for same V) smaller R (but same length) so larger A / thicker	B1 B1 B1	accept P = V^2/R or calculation I = 0.26 Å giving R = 880 or 890 Ω NB if R calculated correctly here, give first 2 marks hence smaller R (but same length) so larger A / thicker
	(e)	(i)	$Q = It = 0.17 \times 8 \times 60 \times 60$ Q = 4900 (C)	C1 A1	ecf b(i) allow 4896; or 5000 or 5011 if using I = 0.174 A give 1 mark for 1.36 or 81.6
		(ii)1	(a unit of) energy equal to 3.6 MJ or 1 kW for 1 h/AW	B1	eg 1000 W for 3600 s or similar
		(ii)2	40 x 8 = 320 Wh / 0.32 kWh 0.32 x 22 = 7.0(4) p	C1 A1	accept 7 p (no SF error); allow 7000p (7040) for 1 mark
			Total	15	

Q	uesti	on	Answer	Marks	Guidance
2	(a)	(i)1	infinity	B1	accept symbol
	(a)	(i)2	R = 1.8/10 x 10 ⁻³ R =180 Ω	C1 A1	0.18 Ω scores 1 mark
A A A	(a)	(ii)	resistance decreases because I increases more than V therefore since R = V/I value decreases/AW	B1 B1 B1	accept calculation at second value, e.g. at 2.0 R = 53 Ω , <u>with comparison</u> OR at two other values QWC mark for second marking point
A A A	(b)		correct <u>symbol</u> and <u>direction</u> for LED R in series with LED across XY ammeter in series voltmeter in parallel with LED only	B1 B1 B1 B1	circle not essential, internal line optional no variable resistor
	(c)		torch; car brake/rear light/ traffic light, etc. torch: draws a lower current / light lasts longer before battery discharged/AW or LEDs (much) more efficient (at converting electrical energy into light)/AW or if one LED fails remainder still lit/AW	M1 A1	suitable example accept any one sensible statement, include longer life, more durable contradictory statements score zero
			Total	12	

Q	Question		Answer	Marks	Guidance
3	(a)		R of thermistor decreases as temperature increases	B1	accept more free e's as temperature rises
A			supply vis constant/ <u>total</u> R is smaller	BI	using I = nAev
A			current increases <u>as V = IR</u> /AW	B1	current increases as v decrease very small/AW
Α					
	(b)		$R_{th} = 40 \Omega$ at 240 °C (stated or used in calculation)	B1	apply ecf if wrong value of R read from graph
			total R in circuit = 240 Ω	C1	
			I = 6/240 = 0.025 A	C1	allow ∨ = (200/240)6
			V = 200 x 0.025 = 5.0 V	A1	so V = 5.0 V accept 5 V (no SF error)
	(C)	(i)	correct symbol for LDR	B1	no circle required
		(ii)	R of LDR decreases/current in circuit increases	M1	
			so V increases across fixed/200 Ω resistor/AW	A1	accept simple potential divider argument
					accept voltmeter reading increases
			Total	10	

G	Question		Answer	Marks	Guidance
4	(a)		R's in parallel have same V/AW so $4.0 \times 0.30 = 6.0 \times 0.20$	M1 A1	allow I splits in inverse ratio to R or AW; hence I in 6 ohm = 4 / 6 x 0.3 = 0.2 A
	(b)	(i)	sum of/total current into a junction equals the sum of/total current out or total algebraic sum of currents is zero	B1	allow Kirchhoff's first law
		(ii)	0.50 (A)	A1	accept 0.5 (A) (no SF error)
	(C)		correct formula for R_p and substitution R_p = 2.4 Ω R_s = 8.0 (Ω)	C1 C1 A1	apply ecf to R_p for second mark accept 8 (Ω) (no SF error)
	(d)	(i)	energy transferred from source/changed from some form to electrical energy; <u>per</u> unit charge (to drive charge round a complete circuit)	M1 A1	allow form as e.g. light/chemical/heat allow energy <u>divided by</u> charge
		(ii)	V = IR = 0.50 x 8.0 =4.0 (V)	A1	ecf b(ii),c i.e. answer = b(ii) x c accept 4 (V) (no SF error)
		(iii)	E - V = Ir giving 5.0 - 4.0 = 0.50 r r = 2.0 (Ω)	C1 A1	ecf b(ii) accept 2 (Ω) (no SF error); give max of 1 mark for r = 3.3 Ω , i.e. using I = 0.3 A
			Total	12	

Q	Question		Answer	Marks	Guidance
5	(a)		electrons have mass, photons have zero mass electrons have charge, photons are uncharged	B1 B1	max 2 marks from 3 marking points
			photons travel at <u>speed of light</u>		lower speed of electrons not required for mark
	(b)	(i)	energy = eV = 1.6 x 10 ⁻¹⁹ x 5000 =8.0 x 10 ⁻¹⁶ (J)	C1 A1	accept 8 x 10 ⁻¹⁶ (J) (no SF error)
		(ii)	$\frac{1}{2}$ mv ² = 8.0 x 10 ⁻¹⁶	C1	
			$v^2 = 1.76 \times 10^{713}$	C1	avidance of coloulation required
			$v = 4.2 \times 10^{10} (m s^{-1})$	A1	evidence of calculation required
	(c)	(i)	electron wavelength depends on its speed/momentum	B1	accept de Broglie equation with labels defined
		(ii)	$\lambda = h/mv$	C1	select formula
			$\lambda = 6.63 \times 10^{-34} / (9.1 \times 10^{-31} \times 4.2 \times 10^{7})$	C1	substitution; allow 4×10^{7}
			$= 1.7 \times 10^{-1} (m)$	A1	allow 1.8 x 10 '' (m)
	(d)		$E = hc/\lambda$	C1	select equation
			$\lambda = 6.63 \times 10^{-34} \times 3.0 \times 10^{8} / 8.0 \times 10^{-16}$	C1	substitute and manipulate
			$= 2.5 \times 10^{-10} (m)$	A1	answer 2.49 x 10 ¹¹⁰ (m)
	(e)	(i)	photoelectric effect / emission	B1	
		(ii)	$KE_{max} = hf - \phi$ or $hf = \phi + KE_{max}$	C1	can be copied from data sheet
			$9.0 \times 10^{-13} - 7.2 \times 10^{-13} = 1.8 \times 10^{-13} (J)$	A1	
		(iii)	Electrons in the metal have a range of energies	B1	w.f. is minimum energy to escape from surface /AW
			most require more than the w.f. energy to escape from the	B1	max k.e. given when w.f. subtracted from photon energy
			surface/AW		or photon gives all of its energy to one electron
			Total	19	

Q	Question		Answer	Marks	Guidance
6	(a)	(i)	<i>displacement :</i> (any) distance moved from equilibrium of a <u>point/particle</u> on a wave <u>amplitude</u> maximum displacement (caused by wave motion)	B1 B1	allow rest, zero, mean position
	(a)	(ii)	<i>frequency</i> number of wavelengths passing a point /vibrations at a point <u>per</u> unit time/second or produced by the wave source /AW	B1	allow number of oscillations / cycles per second accept in one second
			phase difference between two points on the same wave/waves of the same frequency, how far through the cycle one point is compared to the other	B1	allow suitable descriptions of in phase <u>and</u> out of phase; or an angular measurement of how much a wave leads or lags/AW
A A A	(b)		pulse starts at 0.5 s ends at 2.0 s pulse shape is reversed from Fig 6.1 pulse has correct amplitudes	B1 B1 B1 B1	ie amplitude decreasing from L to R over 1.5s accept inversion in time axis NB if extra loops, probably only first marking point
					available if diagram looks like a coiled spring rather than a smooth curve, 1 st , 2 nd and 4 th marking points are possible
			Total	8	

Question		ion	Answer	Marks	Guidance
7 A A A	(a)	(i)	(atom releases energy when) electron moves from <u>high to</u> <u>low level</u> energy released is in form of a <u>photon</u> possible transitions are between $n = 3$ and $n = 1$, $n = 3$ and $n = 2$, $n = 2$ and $n = 1$	B1 B1 B1	can be illustrated on diagram by downward arrow connecting levels can be illustrated on diagram
	(a)	(ii)1	$\begin{aligned} \epsilon &= hc/\lambda \\ &= 6.63 \times 10^{-34} \times 3.0 \times 10^8 / 6.56 \times 10^{-7} \\ &= 3.0(3) \times 10^{-19} \text{ (J)} \end{aligned}$	C1 A1	choosing formula and substitution answer accept 3 x 10 ⁻¹⁹ (J) (no SF error)
	(a)	(ii)2	from $n = 3$ to $n = 2$	B1	allow between $n = 3$ and $n = 2$ allow $n = 2$ to $n = 3$ or between $n = 2$ and $n = 3$ if there is no contradiction with answer given in 7ai
	(b)	(i)1	d sin $\theta = \lambda$ d sin 11.4° = 6.56 x 10 ⁻⁷ d = 6.56 x 10 ⁻⁷ /0.198 d = 3.3 x 10 ⁻⁶ (m)	C1 C1 A1	choosing formula and substitution manipulation and sin 11.4° = 0.198
	(b)	(i)2	$1/d = 3 \times 10^5 \text{ m}^{-1} = 300 \text{ mm}^{-1}$	A1	ecf b(i)1; allow 301 or 302 as data given to 3 sig figs
	(b)	(ii)	2 rays, one either side of normal to grating at about 8°, say	B1	accept any sensible angle
			Total	11	

G482

June 2012

Q	uesti	on	Answer	Marks	Guidance
8	(a)		travel in a vacuum same speed (in vacuum)/at c caused by accelerating charges are (oscillating) electric and magnetic fields	B1 B1	max 2 marks from 4 marking points for any one incorrect property, max of 1/2 if 2 incorrect properties, score 0
	(b)		10 ⁻⁴ microwaves; 10 ⁻⁶ ir; 10 ⁻⁸ uv; 10 ⁻¹² gamma	B1 B1	4 correct 2 marks 2 correct 1 mark
	(c)	(i)	the incident wave is reflected at the sheet to produce return wave <u>of same frequency</u> /AW reflected wave is weaker OR the reflected wave has travelled a greater distance	B1 B1	accept incident_and reflected waves are from same source/of same wavelength/AWallow wave amplitude decreases with distance
A A A	(c)	(ii)	reflected wave interferes/superposes with the incident wave constructive interference occurs (or waves add) to give maxima/AW and destructive interference occurs (or waves add) to give minima/AW detail given, e.g. waves add in phase for max/out of phase for min or path difference n λ for max (2n +1)/2 λ for min	B1 M1 A1	if <u>incident</u> and <u>reflected</u> waves identified in (c)(i) accept "the waves interfere / superpose" QWC mark for second marking point accept antinodes for maxima and nodes for minima
	(c)	(iii)	$\lambda/4 = 7.5 \text{ mm}; \ \lambda = 30 \text{ mm}$	B1	
	(C)	(iv)	appreciation that I is proportional to a^2 ratio = $(0.8 + 0.6)^2/(0.8 - 0.6)^2$ = $(1.4/0.2)^2 = 7^2 = 49$	C1 C1 A1	
			NOW SCROLL DOWN TO CHECK PAGE 18 IS BLANK Total	13	
			NOW SCROLL DOWN TO CHECK PAGE 18 IS BLANK Total	13	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

